亚洲av电影一区,91精品国产欧美一区二区18,亚洲综合二区,日韩在线一区视频

全國服務咨詢熱線:

13395745986

當前位置:首頁  >  技術文章  >  應用案例 | T型光聲池的光聲光譜技術用于同時檢測基于三重共振模態的多組分氣體

應用案例 | T型光聲池的光聲光譜技術用于同時檢測基于三重共振模態的多組分氣體

更新日期:2023-07-19      點擊次數:1417
  T型光聲池的光聲光譜技術用于同時檢測基于三重共振模態的多組分氣體
 
  T-type cell mediated photoacoustic spectroscopy for simultaneous detection of multi-component gases based on triple resonance modality
 
  近日,來自西安電子科技大學、哈爾濱工業大學可調諧(氣體)激光技術國家級重點實驗室的聯合研究團隊發表了《T型光聲池的光聲光譜技術用于基于三重共振模態的多組分氣體的同時檢測》論文。
 
  Recently, the joint research team from  School of Optoelectronic Engineering, Xidian University,  National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, published an academic papers T-type cell mediated photoacoustic spectroscopy for simultaneous detection of multi-component gases based on triple resonance modality.
 
  油浸式電力變壓器是現代電力分配和傳輸系統中最重要的絕緣設備之一。通過同時測量絕緣油中的溶解氣體,如一氧化碳(CO)、甲烷(CH4)和乙炔(C2H2),可以在電力變壓器的過熱、電弧和局部放電故障的早期診斷中提供合適的解決方案。變壓器故障主要可分為過熱故障和放電故障。CO、CH4和C2H2的含量變化是變壓器故障的主要指標。過熱故障包括裸金屬過熱、固體絕緣過熱和低溫過熱。裸金屬過熱的特征是烴類氣體(如CH4和C2H2)濃度的上升。上述兩種氣體的總和占總烴類氣體的80%以上,其中CH4占較大比例(>30 ppm)。CO的濃度(>300 ppm)強烈指示固體絕緣過熱和變壓器故障中的低溫過熱。當變壓器處于放電故障時,C2H2會急劇增加(>5 ppm,占總烴類氣體的20%-70%)。因此,本研究選擇CO、CH4和C2H2作為目標分析物。傳統的多組分氣體定量檢測方法,如氣相色譜儀、半導體氣體傳感器和電化學傳感器,在實時監測、恢復時間、選擇性和交叉敏感性方面存在一定限制。基于光聲光譜技術的光學傳感器平臺具有高靈敏度、高選擇性、快速響應、長壽命和成熟的傳感器設備等優點,在多組分氣體傳感領域發揮著重要作用。已經開發出多種基于光聲光譜技術的多組分氣體傳感器模式,如傅里葉變換紅外光聲光譜模式、基于寬帶檢測的熱輻射體或黑體輻射體使用多個帶通濾波器、多激光器與時分復用(TDM)方法的結合,以及采用多共振器和頻率分割復用(FDM)方案。然而,由于寬帶光源的相對弱強度,弱光聲(PA)信號易受到背景噪聲的干擾,這是高靈敏度檢測的主要障礙。
 
  Oil-immersed power transformer is one of the most important insulation equipment in modern power distribution and transmission systems. Simultaneous measurements of the dissolved gases in insulating oil, such as carbon monoxide (CO), methane (CH4) and acetylene (C2H2), can represent a suitable solution in early diagnosis of overheating, arcing and partial discharge failures of power transformers . Transformer fault can mainly be divided into overheating fault and discharge fault. The content changes of CO, CH4, and C2H2 are the main indicators of transformer failure. Overheating fault includes bare metal overheating, solid insulation overheating and low temperature overheating. The bare metal overheating is characterized by the rising concentration of hydrocarbon gas, such as CH4 and C2H2. The sum of the above two gases accounts for more than 80% of the total hydrocarbon gas, and CH4 accounts for a larger proportion (>30 ppm). The concentration of CO (>300 ppm) strongly indicates the solid insulation overheating and the low temperature overheating in the transformer failure. When the transformer is in discharge fault, the C2H2 will increase dramatically (>5 ppm, 20%− 70% of the total hydrocarbon gas). Therefore, CO, CH4, and C2H2 are selected as the target analytes in this work. The traditional quantitative detection of multiple analytes, such as gas chromatographs, semiconductor gas sensors and electrochemical sensors, were limited in terms of real time monitoring, recovery time, poor selectivity and cross sensitivity. Photoacoustic spectroscopy (PAS)-based optical sensor platforms, which feature the advantages of high sensitivity, high selectivity, fast response, long lifetime and well-established sensing devices, have played an important role in the field of multi-component gas sensing. Various PAS-based multi-gas sensor modalities have been developed, such as Fourier transform infrared PAS modality, broadband detection based thermal emitters or blackbody radiators using several band-pass filters, the use of multi-lasers combined time-division multiplexing (TDM) methods , and multi-resonators with frequency-division multiplexing (FDM) schemes. Due to the relatively poor intensity of the broadband source, the weak photoacoustic (PA) signals were sensitively affected by the background noise, which was a major obstacle to highly sensitive detection.
 
  由于吸收和共振圓柱體共同決定了其共振頻率,設計并驗證了一種T型光聲池作為適當的傳感器。通過引入激勵光束位置優化,從模擬和實驗中研究了三種指定的共振模式,呈現了可比較的振幅響應。使用QCL、ICL和DFB激光器作為激發光源,同時測量CO、CH4和C2H2,展示了多氣體檢測的能力。
 
  A T-type photoacoustic cell was designed and verified to be an appropriate sensor, due to the resonant frequencies of which are determined jointly by absorption and resonant cylinders. The three designated resonance modes were investigated from both simulation and experiments to present the comparable amplitude responses by introducing excitation beam position optimization. The capability of multi-gas detection was demonstrated by measuring CO, CH4 and C2H2 simultaneously using QCL, ICL and DFB lasers as excitation sources respectively.
 
  圖片顯示了配備了T型光聲池的基于PAS的多組分氣體傳感器配置的示意圖。使用三個激發激光器作為激光源,包括DFB ICL(HealthyPhoton,型號HPQCL-Q)、DFB QCL(HealthyPhoton,型號QC-Qube)和NIR激光二極管(NEL),分別在2968 cm−1、2176.3 cm−1和6578.6 cm−1處發射,以實現對CH4、CO和C2H2的同時檢測。ICL、QCL和NIR激光二極管在目標吸收波長處的光功率分別為8 mW、44 mW和32 mW,通過熱功率計(Ophir Optronics 3 A)進行測量。所有激光源都通過調節電流和溫度控制來驅動。
 
  A schematic diagram of PAS-based multi-component gas sensor configuration equipped with the developed T-type PAC is shown in Fig. Three excitation laser sources, including a DFB ICL (HealthyPhoton, model HPQCL-Q), a DFB QCL (HealthyPhoton, model QCQube) and an NIR laser diode (NEL) emitting at 2968 cm−1, 2176.3 cm−1 and 6578.6 cm−1, were employed to realize the simultaneous detection of CH4, CO and C2H2. The optical powers of the ICL, QCL and NIR laser diode measured by a thermal power meter (Ophir Optronics 3 A) at the target absorption lines were 8 mW, 44 mW and 32 mW, respectively. All the laser sources were driven by tuning the current and temperature control.
 
圖片
  Fig.The schematic diagram of multi-resonance PAS-based gas sensor configuration equipped with the developed T-type PAC for multi-component gas simultaneous detection. Operating pressure: 760 Torr.
 
圖片
HealthyPhoton, model HPQCL-Q
 
圖片
HealthyPhoton, model QCQube
 
  結論
 
  建立了基于T型光聲池的多共振光聲光譜氣體傳感器,并驗證其能夠進行多組分同時檢測,達到ppb級別的靈敏度。通過有限元分析(FEA)模擬優化和實驗光束激發位置設計,三個指定的諧振頻率的光聲響應相互比較,確保了同時檢測多種微量氣體的高性能。選擇了CO、CH4和C2H2這三種可燃氣體作為目標氣體,使用QCL(4.59 µm,44 mW)、ICL(3.37 µm,8 mW)和NIR激光二極管(1.52 µm,32 mW)作為入射光束進行同時檢測驗證。F1模式下,光束照射到緩沖腔體壁上,信噪比(SNR)相比通過吸收圓柱體的情況提高了4.5倍。實驗得到了CO、CH4和C2H2的最小檢測限(1σ)分別為89ppb、80ppb和664ppb,對應的歸一化噪聲等效吸收系數(NNEA)分別為5.75 × 10−7 cm−1 W Hz−1/2、1.97 × 10−8 cm−1 W Hz−1/2和4.23 × 10−8 cm−1 W Hz−1/2。對濕度交叉敏感性進行改進的研究提供了對光聲光譜傳感器在濕度松弛相關效應方面的更好理解。利用單個光聲腔體和單個探測器進行多組分氣體傳感的這種開發的光聲光譜模式,具有在電力變壓器故障的早期診斷方面的獨特潛力。
 
  Conclusions
 
  A T-type cell based multi-resonance PAS gas sensor was established and verified to be capable of multi-component simultaneous ppb-level detection. By the FEA simulation optimization and experimental beam excitation position design, the PA responses of the three designated resonant frequencies are comparable which guarantees the high performance of multiple trace gas detection simultaneously. The three combustible species of CO, CH4 and C2H2 were selected as target gases for the simultaneous detection verification using a QCL (4.59 µm, 44 mW), an ICL (3.37 µm, 8 mW) and a NIR laser diode (1.52 µm, 32 mW) as incident beams. The SNR for F1 mode with the beam irradiating on the buffer wall was increased by 4.5 times than that of passing through absorption cylinder. The experimental MDLs (1σ) were achieved as of 89ppb (CO), 80ppb (CH4) and 664ppb (C2H2) have been acquired, respectively, corresponding to the NNEA coefficients of5.75 × 10−7 cm−1 W Hz−1/2, 1.97 × 10−8 cm−1 W Hz−1/2 and 4.23 × 10−8 cm−1 W Hz−1/2. An improved humidification investigation regarding cross-sensitivity analysis provides a better understanding of PAS sensors in humidity relaxation related effects. This developed PAS modality of utilizing a single PAC and a single detector for multicomponent gas sensing exhibits unique potential for early diagnosis of power transformer failures.
 
圖片
  Simulated spectral distribution characteristics of CO, CH4 and C2H2 based on HITRAN Database. Temperature and pressure: 296 K and 1 atm respectively.
 
圖片
  Schematic structure of the developed T-type PAC.
 
圖片
  Simulated sound pressure distribution of T-type PAC model for the three selected resonance modes by FEA method. Color bar: Simulated sound pressure (Pa).
 
圖片
  Simulation results of the T-type PAC acoustic characteristics with the incident beam position optimization. (a) and (b): Two different incident ways of the excitation beam; (c), (d) and (e): The simulated pressure amplitude response vs. frequency for F1, F2 and F3 detection, respectively.
 
圖片
  The experimental results of PA signals for different resonance modes by scanning the incident excitation beam. (a) Schematic diagram of the light source scanning process in the T-type PAC. Dashed line: Central axis. (b) The PA amplitude of 100 ppm CO vs. the beam position of ICL source. (c) The PA amplitude of 50 ppm CH4 vs. the beam position of ICL source. (d) The PA amplitude of 50 ppm C2H2 vs. the beam position of DFB laser diode. Insert: The irradiated surface of PAC.
 
圖片
  The experimental results for CH4 detection with the incident beam position optimization. (a) Two different ways (I1, I2) of incident excitation beam using ICL for CH4 measurement; (b) The PA amplitude vs. frequency of F1 for the two incident ways; (c) The PA spectra of 100 ppm CH4 in the ICL tunning range using both incidence ways; (d) The PA signal amplitude of CH4 vs. gas concentration for two incidence ways.
 
圖片
  Schematic of the improved humidification system for humidity control.
 
  Reference
 
  Le Zhang, Lixian Liu, Xueshi Zhang, Xukun Yin , Huiting Huan, Huanyu Liu, Xiaoming Zhao, Yufei Ma, Xiaopeng Shao,T-type cell mediated photoacoustic spectroscopy for simultaneous detection of multi-component gases based on triple resonance modality,Photoacoustics 31 (2023) 100492.
 
  https://doi.org/10.1016/j.pacs.2023.100492
 

全國統一服務電話

0574-88357326

電子郵箱:info@healthyphoton.com

公司地址:浙江省寧波市鄞州區潘火街道金源路中創科技園1號樓305室

微信公眾號

欧美黑人巨大xxxx猛交| 51午夜精品国产| 国产精品免费av一区二区| 日本一区二区视频在线观看| 91麻豆桃色免费看| 老司机2019福利精品视频导航| 黄色小网站91| 你懂的在线观看一区二区| 国产黄a三级三级看三级| 欧美日韩国产第一页| 日韩1区在线| 日韩av片在线免费观看| 男裸体无遮挡网站| 香蕉亚洲视频| 欧美激情亚洲国产| www.51av欧美视频| 777久久精品一区二区三区无码| 欧美先锋资源| 人妻少妇精品久久| 亚洲乱码一区| 国产一级精品aaaaa看| 成人羞羞网站| 青青草在线观看视频| 久久国产视频网| 国产无遮无挡120秒| 欧美日韩黄色影视| 欧美午夜激情影院| 2024国产精品| caoporn97免费视频公开| 天堂社区 天堂综合网 天堂资源最新版| 蜜臂av日日欢夜夜爽一区| 天天操夜夜拍| 亚洲精品手机在线观看| 欧美中文字幕不卡| 3d动漫一区二区三区在线观看| 免费一级a毛片夜夜看| 欧美在线一二三| 性色av一区二区| 欧美日韩国产综合在线| 亚洲精选成人| 在线免费一级片| 日韩经典一区二区三区| 中文字幕第八页| 婷婷六月综合亚洲| 国产在线91| 亚洲av无码一区二区三区网址| 午夜成人免费视频| 每日更新av在线播放| 被灌满精子的波多野结衣| 国产一区91| 台湾佬美性中文| 精品色蜜蜜精品视频在线观看| www黄在线观看| 天堂а√在线中文在线 | 久久久久久高清| 一区二区三区久久| 精品无人乱码一区二区三区 | 免费不卡在线视频| 1区2区视频| 国产精品99久久久久久久| 91精品啪在线观看国产18| 亚洲视频在线观看免费视频| 一本久道久久综合中文字幕| xfplay资源站色先锋在线观看| 国产精品一区二区三区久久| 日韩毛片视频在线看| 欧美a级在线观看| 亚洲精品一二三四| 亚洲第一页在线| 欧美猛男同性videos| 免费黄色一级网站| 国产盗摄精品一区二区三区在线| 三级在线播放| 国产精品无码自拍| 欧美黄色小视频| 国产精品视频一区二区三区不卡| 夜先锋资源网| 国内精品久久99人妻无码| 91精品入口蜜桃| 欧美日韩国产页| 国产成人一区| 在线观看精品视频看看播放| 中文字幕一区二区三区最新| 成人av中文字幕| 欧美人体视频xxxxx| 黄色香蕉视频在线观看| 国产精品免费一区豆花| 综合激情婷婷| 亚洲伦理在线观看| 99视频免费观看| 国产亚洲综合在线| av综合网址| 精品网站www| 九九九热999| 亚洲成人av一区二区三区| 91天天综合| 日本熟妇毛茸茸丰满| 欧美少妇xxx| 亚洲精品一二三**| 亚洲免费不卡视频| 国产成人在线小视频| 欧美激情精品久久久久久黑人| 欧美性色aⅴ视频一区日韩精品| 国产精品888| 欧美日一区二区在线观看| sm国产在线调教视频| 欧美人与动性xxxxbbbb| 毛片网站免费观看| 538国产精品视频一区二区| 噜噜噜久久亚洲精品国产品小说| 国产天堂av| 亚洲熟女毛茸茸| 好看的日韩精品| 丝袜情趣国产精品| 北条麻妃一区二区三区在线观看 | 狠狠色香婷婷久久亚洲精品| 亚洲神马久久| 亚洲图色一区二区三区| 国产xxx免费观看| 免费在线黄色网| 国产成人无码a区在线观看视频| 亚洲欧洲av一区二区| 成人资源www网在线最新版| 国产三级在线观看视频| 亚洲乱码国产乱码精品精天堂| 亚洲一区二区毛片| 一区二区在线| 香蕉国产精品| 国产成人精品999在线观看| sis001欧美| 免费在线视频欧美| 超碰在线电影| 天堂视频在线免费观看| 日本污视频在线观看| 国产精品入口芒果| 欧美疯狂做受xxxx高潮| 亚洲成av人**亚洲成av**| 久久不见久久见中文字幕免费| 香蕉视频在线免费| wwwxxxx国产| 成人免费观看毛片| 久久成人精品视频| 国产一区二区三区黄视频 | 午夜精品福利影院| 激情视频免费| 成人亚洲精品7777| 国产精品伊人色| 久久狠狠高潮亚洲精品| 欧美 日韩 国产在线观看| 91沈先生作品| 亚洲人成五月天| 亚洲成人一区二区| 99久久99久久精品国产片果冻| 久久男人av| av网站免费在线播放| 99久久国产免费免费| 91精品在线免费观看| 国产精品夜夜爽| 北条麻妃国产九九九精品小说| 国产99在线观看| 婷婷五月综合久久中文字幕| 性欧美丰满熟妇xxxx性仙踪林| 91青青草免费观看| 欧美国产日产韩国视频| www.国产一区| 在线日韩第一页| 欧美三级日韩三级| 99精品欧美一区二区三区小说 | 人妻精品久久久久中文| 国产91对白刺激露脸在线观看| 精品久久久无码人妻字幂| 日韩在线综合网| 男女啪啪免费观看| 国产三级三级看三级| 小泽玛利亚一区二区免费| 深爱五月激情网| 第四色在线视频| 欧美成人短视频| 亚洲黄色a v| 成年人视频观看| 美女av免费在线观看| 91在线播放国产| 日本欧美在线视频| 久久久国产成人精品| 亚洲视屏在线播放| 亚洲免费精彩视频| 91九色最新地址| 亚洲综合无码一区二区| 91麻豆精东视频| 久久久久欧美精品| 久久成人精品无人区| 99re在线视频这里只有精品| 99精品视频中文字幕| 国产成人激情av| 一区二区三区午夜视频| 精品一区av| 激情久久一区| 国产高清精品网站| 老牛嫩草一区二区三区日本| av成人亚洲|